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Vectorial Boolean functions and S-boxes

Vectorial Boolean functions: F : Fn
2 → Fm

2 for n and m positive
integer.
S-boxes are vectorial Boolean functions used in block ciphers
to provide confusion.
Attacks on block ciphers and resp. properties of S-boxes:

Linear attack – Nonlinearity

Differential attack – Differential uniformity

Algebraic attack – Existence of multivariate equations

Higher order differential attack – Algebraic degree

Interpolation attack – Univariate polynomial degree

Lilya Budaghyan APN functions and S-boxes



Algebraic and Univariate Polynomial Degrees

For any positive integer n the unique univariate representation
of F : F2n → F2n :

F (x) =
2n−1∑
i=0

cix i , ci ∈ F2n .

Binary expansion of an integer k , 0 ≤ k < 2n: k =
∑n−1

s=0 2sks,
where ks ∈ {0,1}.
2-weight of k : w2(k) =

∑n−1
s=0 ks.

Algebraic degree of F :

d◦(F ) = max
0≤i≤2n−1

ci 6=0

w2(i).

S-boxes should have high univariate polynomial degree and
high d◦(F ).
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Nonlinearity

Trace function from F2n to F2: trn(x) =
∑n−1

i=0 x2i
.

Walsh coefficients of F :

λF (u, v) =
∑

x∈F2n

(−1)trn(vF (x)+ux), u, v ∈ F2n , v 6= 0.

Walsh spectrum of F : ΛF = {λF (u, v) : u ∈ F2n , v ∈ F∗2n}.

Extended Walsh spectrum of F :
Λ′F = {|λF (u, v)| : u ∈ F2n , v ∈ F∗2n}.

Nonlinearity of F : N(F ) = 2n−1 − 1
2 maxλ∈Λ′F

λ.

The higher is nonlinearity the better is the resistance to linear
attack.

F is almost bent (AB) if ΛF = {0,±2
n+1

2 }.
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Differential uniformity

F is differentially δ-uniform if

F (x + a)− F (x) = b, ∀a ∈ F∗2n , ∀b ∈ F2n ,

has at most δ solutions.

The smaller is δ the better is the resistance to differential attack.

F is almost perfect nonlinear (APN) if δ = 2.

F is AB =⇒ F is APN.

n is odd and F is quadratic APN =⇒ F is AB.
Algebraic degree of AB function is at most (n + 1)/2 and it
exists for n odd only.
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CCZ-equivalence

The graph of a function F : F2n → F2n is the set

GF = {(x ,F (x)) : x ∈ F2n} ⊂ F2
2n .

F and F ′ are CCZ-equivalent if

L(GF ) = GF ′

for some affine permutation L of F2
2n .

CCZ-equivalence preserves:
differential uniformity
nonlinearity
APNness, ABness
resistance to algebraic attack
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EA-equivalence and Inverses of Permutations

F and F ′ are extended affine equivalent (EA-equivalent) if

F ′ = A1 ◦ F ◦ A2 + A.

for some affine permutations A1 and A2 and some affine
function A.

EA-equivalence and inverse transformation are particular cases
of CCZ-equivalence.

EA-equivalence preserves:
differential uniformity
nonlinearity
resistance to algebraic attack
algebraic degree
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Known APN power functions xd on F2n (up to equiv.)

Functions Exponents d Conditions

Gold 2i + 1 gcd(i, n) = 1, 1 ≤ i < n/2

Kasami 22i − 2i + 1 gcd(i, n) = 1, 2 ≤ i < n/2

Welch 2m + 3 n = 2m + 1

Niho 2m + 2
m
2 − 1, m even n = 2m + 1

2m + 2
3m+1

2 − 1, m odd

Inverse 22m − 1 n = 2m + 1

Dobbertin 24m + 23m + 22m + 2m − 1 n = 5m

Gold, Kasami functions (with n odd) and Welch, Niho functions
are also AB. For n even inverse functions are differentially
4-uniform, and it is used as S-box in AES with n = 8.
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APN polynomials EA-inequivalent to power functions

The fist families of APN polyn. EA-ineq. to power functions

x2i +1 + (x2i
+ x + trn(1) + 1)trn(x2i +1 + x trn(1))

with gcd(i ,n) = 1, n ≥ 4. It is AB for n odd.

It is by construction CCZ-equivalent to Gold functions (2005).

This proves that CCZ-equivalence is more general than
EA-equivalence with taking the inverse of permutations.

For n = 5 it is AB function EA-inequivalent to any permutation
which disproved the conjecture of 1998.
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Problems Related to CCZ-equivalence

Do there exist AB functions CCZ-inequivalent to permutations?

Are there APN polyn. CCZ-eq. to other known APN power
functions but EA-ineq. to them?

Is there more general equivalence preserving nonlinearity and
dif. uniformity?

Are the known power APN functions CCZ-inequivalent to each
other? (solved partly)

Do there exist APN polynomials CCZ-inequivalent to power
functions? (solved)
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Known APN polynomials CCZ-inequivalent to power
functions

(i) x2s+1 + cx2ik +2tk+s
, n = pk , p = 3,4;

(ii) x3 + c−1trn(c3x9);
(iii) x3 + c−1tr3

n(c3x9 + c6x18)i , n = 3k , i = 1,2;

(iv) x(x2i
+ x2n/2

+ cx2i+n/2
) + x2i

(c2n/2
x2n/2

+ bx2i+n/2
) +

x2i+n/2+2n/2
, n even;

(v) bx2s+1 + b2n/2
x (2s+1)2n/2

+ cx2n/2+1 +
∑n/2−1

i=1 rix2i (2n/2+1), n
even, n/2 odd;

(vi) c2k
x2−k +2k+s

+ cx2s+1 + bx2−k +1 + dc2k +1x2k+s+2s
, n = 3k .

Functions (i)-(vi) are quadratic over F2n and they are AB when n
is odd. All have Gold like Walsh spectra.
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Classification of APN Polynomials

Only one known example of APN polynomial CCZ-ineq. to
quadratics and to power functions (n=6).
Many unclassified quadratic APN polynomials for
6 ≤ n ≤ 12.
Only one known example of quadratic APN polynomial with
Walsh spectrum different from gold (n = 6).

CCZ-classification is finished for:
APN functions with n ≤ 5 (there are only power functions).
quadratic APN functions for n = 6 (there are 13)!
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Existence of APN Permutations for n Even

Big APN problem (solved in 2009):
Do APN permutations exist for n even?

no for quadratics,
no for F ∈ F24 [x ] if n/2 is even,
no for F ∈ F2n/2 [x ],
there is an APN permutation for n = 6 CCZ-eq. to
quadratics!

Still big APN problem:
Do APN permutations exist for n ≥ 8 even?

Lilya Budaghyan APN functions and S-boxes



Bent and Perfect Nonlinear Functions

Let F : F2n → F2m .
F is bent if ΛF = {±2

n
2 }.

F is perfect nonlinear (PN) if δ = 2n−m.
F is PN ⇐⇒ F is bent.
PN functions exist only for n even and m ≤ n/2.

For Boolean functions (case m = 1) and for all bent functions
CCZ-equivalence coincides with EA-equivalence.
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Characterization of APN and AB functions

Let F : F2n → F2n and a,b ∈ F2n , define γF : F2
2n → F2 as

γF (a,b) =

{
1 if a 6= 0 and F (x + a) + F (x) = b has solutions,
0 otherwise.

Then (Carlet, Charpin, Zinoviev, 1998)
F is APN if and only if γF has weight 22n−1 − 2n−1;
F is AB if and only if γF is bent;
if F is APN then the function b → γF (a,b) is balanced for
any a 6= 0;
if F is an APN permutation then the function a→ γF (a,b)
is balanced for any b 6= 0.
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Gamma functions

If F and F ′ are CCZ-equivalent then γF ′ = γF ◦ L for some
affine permutation L of F2

2n .

If F and F ′ are EA-equivalent then
γF ′(a,b) = γF

(
A2(a) + A2(0), A−1

1 (A(a) + b + A(0) + A1(0))
)

for some affine permutations A1,A2 and an affine function A.

All affine invariants for γF are CCZ-invariants for F .

γF is determined for all known families of APN functions except
(vi) and Dobbertin functions B., Carlet, Helleseth, ITW’2011.

For nonquadratic AB cases found γF potentially provide new
bent functions.
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